Bestimmung der Wärmekapazität eines Kalorimeters

Versuchsprotokoll

Tobias Brinkert 27.05.2005 eMail: <t.brinkert@semibyte.de> 27.05.2005

Homepage: <www.semibyte.de>

Inhaltsverzeichnis

1.	Aufgabenstellung	2
2.	Grundlagen	2
3.	Versuchsgeräte	2
4.	untersuchte Gegenstände	2
5.	Arbeitsausführung	2
6.	Meßprotokoll	3
7.	Auswertung / Berechnung der Ergebnisse	3
8.	Fehlerabschätzung	4
0	Endergehnis	5

1. Aufgabenstellung

Bestimmung der Wärmekapazität eines Kalorimeters

2. Grundlagen

Die Wärmekapazität eines Kalorimeters ist der Quotient aus der zugeführten Wärmemenge Q, dividiert durch die herbeigeführte Temperaturänderung $\Delta \vartheta$.

$$C = Q(\Delta \vartheta)^{-1}$$

Bei homogenen Körpern ist sie gleich dem Produkt aus der Masse des Körpers m und der spezifischen Wärmekapazität C.

$$C = m \cdot c$$

Da nicht das ganze Kalorimetergefäß die gleiche Temperatur annimmt, weicht das Produkt $m\cdot c$ von dem experimentell zu bestimmenden Wert ab.

3. Versuchsgeräte

- 1 Kalorimetergefäß (Nr. 4)
- 1 Erlenmeyerkolben (500 ml)
- 1 Busnenbrenner mit Dreifuß und Drahtnetz
- 1 Thermometer, Meßbereich $(-50 +180)^{\circ}C \pm 0, 1 K$
- 1 Waage, Meßbereich $(0 2610) g \pm 0, 1 g$

4. untersuchte Gegenstände

- kaltes und warmes Wasser
- Kalorimeter Nr. 4

5. Arbeitsausführung

- wägen des leeren Kalorimeters mit Deckel $[m_1]$
- das Kalorimeter etwa bis zur Hälfte mit kaltem Wasser füllen und wieder wägen $[m_2]$
- Temperatur des Wassers messen $[\vartheta_1]$

- in einem Erlenmayerkolben kaltes Wasser auf ca 60 °C erwärmen, gut umrühren, warten bis die Temperatur konstant bleibt und jetzt die Temperatur des warmen Wassers messen $[\vartheta_2]$
- das warme Wasser zu dem kalten im Kalorimetergefäß gießen, gut umrühren und die Mischtemperatur messen $[\vartheta_m]$
- Gesamtmasse bestimmen und die Masse des kalten und warmen Wassers bestimmen $[m_G, m_3, m_4]$
- Wärmekapazität des Kalorimeters bestimmen

6. Meßprotokoll

i	$m_1[g]$	$m_2[g]$	$m_g\left[g\right]$	$\vartheta_1 [^oC]$	$\vartheta_2 \left[{}^o C \right]$	$\vartheta_M \left[{}^o C \right]$	$m_3[g]$	$m_4[g]$	$C[JK^{-1}]$
1	569,5	801,1	1057,4	19,2	59,6	39,6	231,6	256,3	82,3
2	569,2	824,5	1081,2	16,2	58,1	36,4	255,3	256,7	85,6
3	569,3	807,0	1047,2	16,5	61,5	38,3	237,7	240,2	75,0
4	569,3	809,8	1074,7	17,3	60,6	38,9	240,5	264,9	107,2
5	569,2	855,5	1060,6	17,3	60,4	34,6	286,3	205,1	81,8

i = Anzahl der Messungen

 m_1 = Masse des leeren Kalorimeters in g

 m_2 = Masse des Kalorimeters und des kaltem Wassers in g

 m_G = Masse des Kalorimeters, des kalten und warmen Wassers in g

 ϑ_1 = Temperatur des kalten Wassers in ${}^{o}C$

 ϑ_2 = Temperatur des warmen Wassers in ${}^{o}C$

 ϑ_M = Mischtemperatur in ${}^{o}C$

 m_3 = Masse des kalten Wassers in $g \Rightarrow m_3 = m_2 - m_1$

 m_4 = Masse des warmen Wassers in $g \Rightarrow m_4 = m_G - m_2$

C = Wärmekapazität des Kalorimeters

7. Auswertung / Berechnung der Ergebnisse

Die Wärmekapazität C des Kalorimeters wird nach der Mischungsmethode bestimmt. Die Gleichung hierfür lautet: Wärmegewinn = Wärmeverlust.

$$\Rightarrow (m_1c + C)(\vartheta_M - \vartheta_1) = m_2c(\vartheta_2 - \vartheta_M)$$

$$\Rightarrow C = m_2c\frac{\vartheta_2 - \vartheta_M}{\vartheta_M - \vartheta_1} - m_1c$$

und somit für die hier benutzten Indexe:

$$C = m_4 c \frac{\vartheta_2 - \vartheta_M}{\vartheta_M - \vartheta_1} - m_3 c$$

Die spezifische Wärmekapazität des Wassers c beträgt:

 $4,182 \, kJ (kgK)^{-1} = 4,182 \, J (gK)^{-1}$ (aus Kuchling, Seite 621, Tabelle 17).

Beispielsrechnung für i_1 :

geg:
$$m_3 = 231, 6 g$$
; $m_4 = 256, 3 g$, $\vartheta_1 = 19, 2 °C$; $\vartheta_2 = 59, 6 °C$; $\vartheta_M = 39, 6 °C$

$$C = m_4 c \frac{\vartheta_2 - \vartheta_M}{\vartheta_M - \vartheta_1} - m_3 c$$

$$C = 256, 3 g \cdot 4, 182 J(gK)^{-1} \cdot \frac{59, 6 °C - 39, 6 °C}{39, 6 °C - 19, 2 °C} - 231, 6 g \cdot 4, 182 J(gK)^{-1}$$

$$C = 82, 3 JK^{-1}$$

8. Fehlerabschätzung

$$C = m_4 c \frac{\vartheta_2 - \vartheta_M}{\vartheta_M - \vartheta_1} - m_3 c$$

$$C_{max} = (m_4 + \Delta m_4) c \frac{\vartheta_2 + \Delta \vartheta_2 - \vartheta_M + \Delta \vartheta_M}{\vartheta_M - \Delta \vartheta_M - \vartheta_1 - \Delta \vartheta_1} - (m_3 - \Delta m_3) c$$

$$C_{max} = (m_4 - \Delta m_4) c \frac{\vartheta_2 - \Delta \vartheta_2 - \vartheta_M - \Delta \vartheta_M}{\vartheta_M + \Delta \vartheta_M - \vartheta_1 + \Delta \vartheta_1} - (m_3 + \Delta m_3) c$$

Beispielsrechnung für i_1 :

geg:
$$m_4 = \Delta m_3 = 0, 1g$$
; $\Delta \vartheta_1 = \Delta \vartheta_2 = \Delta \vartheta_M = 0, 1K$

$$C_{max} = (256, 3 + 0, 1)g \cdot 4, 182 J(gK)^{-1} \cdot \frac{59, 6 \circ C + 0, 1 K - 39, 6 \circ C + 0, 1 K}{39, 6 \circ C - 0, 1 K - 19, 2 \circ C - 0, 1 K}$$

$$-(231, 6 - 0, 1)g \cdot 4, 182 J(gK)^{-1}$$

$$C_{max} = 104, 1 JK^{-1}$$

$$C_{min} = (256, 3 - 0, 1)g \cdot 4, 182 J(gK)^{-1} \cdot \frac{59, 6 \circ C - 0, 1 K - 39, 6 \circ C - 0, 1 K}{39, 6 \circ C + 0, 1 K - 19, 2 \circ C + 0, 1 K}$$

$$-(231, 6 + 0, 1)g \cdot 4, 182 J(gK)^{-1}$$

$$C_{min} = 60, 9 JK^{-1}$$

$$\Delta C = \pm 2^{-1}(C_{max} - C_{min})$$

$$\Delta C = \pm 2^{-1}(104, 1 - 60, 9) JK^{-1}$$

$$\Delta C \cdot C^{-1} = \pm 21, 6 JK^{-1}$$

$$\Delta C \cdot C^{-1} = \pm 21, 6 JK^{-1}(82, 3 JK^{-1})^{-1}$$

$$\Delta C \cdot C^{-1} = \pm 26\%$$

i	$C[JK^{-1}]$	$C_{max}\left[JK^{-1}\right]$	$C_{min} [JK^{-1}]$	$\Delta C \cdot C^{-1} [\%]$
1	82,3	104,1	60,9	±26
2	85,6	108,7	62,9	±27
3	75,0	95,0	55,3	±26
4	107,2	128,8	86,0	±20
5	81,8	107,9	56,4	±31
\overline{C}	86,4			±26

9. Endergebnis

Die Wärmekapazität C des Kalorimeters Nr. 4 beträgt $86\,JK^{-1}\pm26\%$ [gemittelt].

Liste der Versionen

Version	Datum	Bearbeiter	Bemerkung
0.9	15.11.1995	Bri	Versuchsdurchführung und Protokollerstellung
1.0	14.09.2003	Bri	Erster EDV-Satz des Protokolls
1.1	17.04.2004	Bri	Layoutänderungen des Protokolls
1.2	18.10.2004	Bri	Layoutänderungen des Protokolls
1.3	27.05.2005	Bri	Adressänderungen aufgrund Domainwechsel